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Delayed self-organized criticality is defined. It is shown to preserve the power-law 
behavior of self-organized criticality with a significant change in the exponents. A 
delayed version of the Ito-Matsuzaki model for earthquakes is constructed and 
studied. This model explains some fractai features of earthquakes as well as the 
Gutenberg-Richter and Omori laws. Furthermore the b value obtained from the 
delayed model is closer to observations than the b value of the undelayed model. 

1. I N T R O D U C T I O N  

Geophysical information indicates that most of  the great earthquakes 
occur on the same zones located around tectonic faults. To explain this, regard 
the earth's crust as a collection of  a small number of very large tectonic 
plates moving at velocities of  the order of a few centimeter per year. The 
boundaries between these plates form faults. Due to the inner motions of the 
earth, the plates press each other and restore the energy until reaching a 
critical value. Then, the tectonic plates undergo a sudden and very rapid 
motion, and the energy is dissipated through the faults: an earthquake occurs. 
Generally, this sudden motion changes the plates' energy. Aftershocks occur 
if the energy reaches its threshold again. In the same way aftershocks may 
be followed by other after-afiershocks and so on (Utsu, 1970). 

Earthquakes have several fractal features (Turcotte, 1992). The frequency 
of earthquakes N ( > M )  having magnitude greater than M is given by the 
following empirical relation (Gutenberg and Richter, 1954); 

log N ( > M )  = - b M  + a (1) 

where the value of  b ranges between 0.8 and 1.06 (Evernden, 1970). The 
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relation between the area of the fractured zone, s, of an earthquake and its 
magnitude is (Turcotte, 1992) 

Then, 

and, 

log S cc M (2) 

N(>s)  ~ s-b (3) 

n(s)  ~ s-(b+l) (4) 

where n (s) is the frequency of earthquakes having size s. 
Omori described the occurrence rate of aftershocks R (t) as a power law 

of time t following the main shock which occurred at time to as follows 
(Omori, 1894; Utsu, 1961): 

1 
R (t) ~ ~ (5) 

(t + to) p 

The concept of self-organized criticality (Bak et al., 1987) is aimed to 
model self-sustaining systems with many degrees of freedom. An interactive 
dissipative system with many degrees of freedom is said to be in a state of self- 
organized criticality if it maintains itself near a critical point. Self-organized 
criticality has applications in various geophysical fields, e.g., earthquake 
dynamics (Ito and Matsuzaki, 1990; Matsuzaki and Takayasu, 1991), plate 
tectonic behavior (Somette et al., 1990), volcanic activity (Diodati et al., 
1991), etc. 

Delayed models aim to reach the optimal description for systems in 
which the occurrence of any event is a result of a main event that occurred 
in the past. This concept applies in many real systems. In medicine, a patient 
may get sick, but symptoms may not appear until later. In economics, an old 
economic mistake may lead to the failure of a great country, as in the former 
USSR. In seismology, earthquakes result from crustal deformation occurring 
over many years. 

2. SELF-ORGANIZED CRITICALITY AND EARTHQUAKES 

The san@fie is the most famous example for self-organized criticality. 
Consider a 2-dimensional lattice with open boundaries; integer variables 
z (i, j) represent the height of the sandpile at the site (i, j) .  Initially each site 
contains a random number of grains between 0 and the critical value (set 
equal to 3). Sand is added to the lattice by the following procedure: 

Step 1: A sand grain is randomly added to a site. 
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Step 2: 

I If z (i, j)  > 3 
then z ' ( i , j )  = z ( i , j )  - 4 (6) 

Land z'(i  + 1 , j  • 1) = z( i  • 1 , j  • 1) + 1 

Step 2 is repeated until all z(i,  j )  become less than 4. Then the avalanche 
ends and we return to step 1. For each avalanche, we calculate its size s and 
the number of distinct sites Sd. 

Dropping 5000 sand grains on a 100 • 100 lattice, we find that the 
probability distributions of s and Sd obey power laws, 

P ( s )  = s - t.o8 ( 7 )  

P(Sd) = s~ 1"18 (8) 

Our results are very close to those obtained in Bak and Creutz (1994). 
Now, we describe the earthquake occurrence in cellular automaton lan- 

guage. Consider a 2-dimensional lattice where sites are considered as tectonic 
plates. Adding sand acts like the inner motion of the earth. The variables 
z (i, j) correspond to the restored energy. An avalanche represents an earth- 
quake. After an earthquake is completed, the heights of all sites which slipped 
during the earthquake either increase or decrease by 1 with equal probabilities. 
Aftershocks originate at those sites whose heights exceeds the threshold. The 
obtained aftershocks obey Omori's law (Ito and Matsuzaki, 1990). 

We dropped 4000 sand grains on a 100 • 100 cellular automaton model 
and calculated the size of each earthquake. We found that the size-frequency 
relation obeys the power law 

/ ' /(S) OC S -- 1.74 (9 )  

Comparison between (4) and (9) gives b ~ 0.74, which is very close to 
that estimated by Ito and Matsuzaki (1990) and agrees with observations 
(Evernden, 1970). So, self-organized criticality is the best approach for earth- 
quake modeling. 

3. DELAYED SELF-ORGANIZED CRITICALITY 

In the preceding models, the event which will occur at time t + 1 
depends only on the state of the model at time t. But it is known that in most 
real systems the behavior of the system at time t - 1 affects that at time 
t + 1. Here we introduce the dependence of an event at time t + 1 on events 
at both times t and t - 1. This is what we mean by the word "delay." Of 
course, this definition may be generalized, but this is deferred to future work. 

First, we constructed a delayed sandpile using the following procedure: 
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Step 1: Initially, we begin with two distinct lattices with heights zl(i, j) 
and z2(i, j) chosen randomly between 0 and 3. 

Step 2: 

z = [zl(i, j) + z2(i, j)]/2 

If Int(z) < z and RND < 0.5, then z = z + 1, where RND is a uniformly 
distributed random number. We have 

z3 = Int(z) (10) 

Add a sand grain randomly to the lattice with heights z3. 
Step 3: 

If  z3(i, j )  > 3 

then z~(i,j) = z3(i,j) - 4 (11) 

[.and z~(i +- 1, j  +__ 1) = z3(i +- 1, j  +__ l) + 1 

This step is repeated until all z3(i, j) become less than 4. 
Step 4: 

zl(i, j) = z2(i, j) 
z2(i, j) z3(i, j)  (1 2) 

For each avalanche we calculate its size s and the number of  distinct 
Sd. The probability distributions of s and sa obey also power laws, 

P(s) = s -1"5 (13) 

P(sa) = s~ 1"59 (14) 

Therefore, delay preserves the power-law behavior of self-organized 
criticality, but with a significant change in the exponents. 

Second, we present a delayed version of  the Ito--Matsuzaki model for 
earthquakes as follows, 

Step 1: We have two distinct lattices with heights zl(i, j) and z2(i, j) 
chosen randomly between 0 and 3. 

Step 2: 

z = [zl(i, j) + z2(i, j)]/2 

If Int(z) < z and RND < 0.5, then z = z + 1, where RND is a uniformly 
distributed random number. We have 

z3 = Int(z) (15) 

Add one grain randomly to z3(lb/2), where Ii and 12 are randomly chosen. 
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Step 3: 

I 
If z3(i, j)  > 3 
then z~(i , j)  = z3(i,j) - 4 (16) 

[and z~(i +- 1 , j  +- 1) = z3(i +- 1 , j  +_. 1) + 1 

This step is repeated until all z3(i, j)  become less than 4. 
Step 4: Perturb the value z3 of all sites which slipped in step 3 by either 

increasing or decreasing by 1 with equal probabilities. If there exist critical 
sites, then return to step 3. 

Step 5: 

Return to step 2. 

zl(i, j )  = z2(i, j)  
(17) 

z2(i, j )  = z3(i, j )  

The obtained aftershocks satisfy Omori's law. The size-frequency rela- 
tion obeys the power law 

n(s)  oc s -1.98 (18)  

The estimated b ~ 0.98 also agrees with observations (Evernden, 1970). 
Therefore, delayed self-organized criticality models for earthquakes pre- 

serve the attractive feature of fractality, and agree with the Omori and Guten- 
berg-Richter laws, in addition to being closer to real systems, where delay 
is a basic feature. The estimated b value is closer to observations than that 
estimated by the ordinary Ito-Matsuzaki model. 
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